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Following the ideas suggested by Landahl(l967, 1975), some model calculations 
of the fluctuating velocity field in the wall region of a turbulent boundary layer 
have been carried out. It was assumed that the turbulent stresses are generated 
intermittently on small scales in time and space owing to bursting-type motions. 
The Reynolds-stress distribution during bursting periods and the mean velocity 
profile were assumed to be known, and the linear large-scale response to a random 
system of bursts was computed using an idealized model for the joint probability 
distribution in time and space of the occurrence of bursts. Computed energy 
spectra of the streamwise velocity fluctuations display scales in the spanwise and 
streamwise directions and time which are in good agreement with measurements 
by Morrison, Bullock & Kronauer (1971). However, the wavenumber band- 
widths of the computed spectra are narrower than those of the measured ones. 
This discrepancy is probably due to the crudeness of the model employed for 
the Reynolds stress during bursting. 

1. Introduction 
It has been shown by Landahl (1967) that the propagation characteristics, i.e. 

convection velocity and decay rate, of the statistically dominant parts of the 
fluctuating pressure and normal velocity in a turbulent boundary layer are 
given by the phase velocity and decay rate, respectively, of slightly damped 
Tollmien-Schlichting waves that propagate in the mean shear flow. These waves 
were assumed to be excited by intensive small-scale bursting motions of the type 
discovered by Kline et ak. (1967). However, Landahl’s theory was not able to give 
the characteristic scales of the dominant fluctuations, only that the relation 
between the length and time scales in Fourier space is given by the dispersion 
relation for the damped Tollmien-Schlichting waves. The theoretical results 
agreed well with surface pressure measurements by Willmarth & Wooldridge 
(1962). The experimental work by Morrison & Kronauer (1969) and Morrison 
et al. ( 1  971) clearly indicates that the statistically dominant streamwise fluctua- 
tions also have a wavelike character, thus lending fkrther support to Landahl’s 
(1967) waveguide model. The present work is an attempt to compute the domi- 
nant eddy scales in the wall layer, taken to be given by the peaks in the respective 
long-time averaged spectra, using a highly idealized model for the production 
mechanism. In $ 2  some experimental work supporting the model used is briefly 
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discussed. I n  $ 3 a recapitulat,ion of the conceptual model of shear-flow turbulence 
suggested by Landahl (1975) is given. The statement of the problem and the 
governing equations are given in $4. The strong nonlinear effects which occur 
during bursting periods are discussed in $5. I n  this section the statistics of the 
bursting motions are also discussed. The computation of the energy spectra is 
described in $6 .  I n  $ 7  the results are discussed and compared with experiments. 

2. Observations of the structure of boundary-layer turbulence 
That the fluctuating velocity field in the wall region of a turbulent boundary 

layer possesses a high degree of organization was discovered by Kline and his 
group a t  Stanford University (Illine et al. 1967). As this region of the boundary 
layer is the one where the turbulent production attains its maximum, this dis- 
covery seemed to indicate that shear-flow turbulence is to a large degree of a 
deterministic nature. Kline et al. (1967) also inferred from their experiments 
that the turbulent momentum transport and production takes place intermit- 
tently in time and space through small-scale bursting motions. This was further 
established by Kim, Kline & Reynolds (1971). The dominant structure of the 
fluctuating velocity field in the wall layer was found to consist of long streaks of 
weak streamwise vorticity. After a fairly well-defined time each streak broke up 
through an intense small-scale bursting motion, which caused strong mixing and 
rapid growth of scales of motion. This bursting motion seemed to be the result of 
a hydrodynamic instability of the Kelvin-Helmholtz type associated with a 
local hydrodynamically unstable shear layer which was formed by the lifting up 
of low-speed fluid from a region near the wall by two counter-rotating vortices. 
A recent investigation by Offen & Kline (1974) indicates that there is a connexion 
between a burst and the one that occurred previously immediately upstream. 
This suggests that the bursts create new streaks which in turn produce new bursts 
and so on. Quantities such as the lifetime of the streaks, the average distance 
between streaks and the burst rate per unit span were shown by Kline et al. 
(1967) to be statistically re~xoducible. 

A similar mechanism for the intermittent turbulent production and momentum 
transport was inferred by Corino & Brodkey (1969). They used a movie camera 
that could record the fluid motions near the wall, following the mean flow a t  any 
preselected distance from the wall. The bursting process (an expression not used 
by these authors) was found to start with a local deceleration of the fluid near the 
wall followed by an accelerahion of the fluid slightly above, that is, a rather strong 
shear layer was formed near the wall. After the formation of this shear layer a 
small parcel of fluid was ejected very rapidly from the low-speed region up into 
the high-speed region, whereupon a significant growth of scales of motion took 
place. The bursting process ended with a sweeping motion of high-speed fluid 
from upstream towards the wall, which restored the instantaneous velocity 
profile to its mean value. Corino & Brodkey showed that the largest part of the 
total Reynolds stress was produced during the short bursting periods. The find- 
ings of Coriiio & Brodkey were further investigated by Wallace, Eckelmann & 
Brodkey (1972), who found that 140% of the Reynolds stress was produced 
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during the ‘active’ bursting periods and -40% by the ‘passive’ turbulent 
flow during the rest of the time. It should be pointed out that Corino & Brodkey 
(1969) did not find any indication of the presence of an unstable vorticity wave 
of the Kelvin-Helmholtz variety found by Kim et ul. (197 1). This discrepancy 
between the two investigations is, t o  this author’s knowledge, unresolved at  
present. Otherwise the phenomena described seem to bevery much of the same 
nature. 

Several later investigations, e.g. those by Brodkey, Wallace & Eckelmann 
(1974), Blackwelder & Kaplan (1972) and Willmarth & Lu (1972, 1973), have 
given more detailed information on the intermittent bursting motions. The 
structure of the large-scale field near the wall was also investigated in detail 
by, among others, Bakewell & Lumley (1967), Morrison & Kronauer (1969), 
Morrison et al. (1971) and Gupta, Laufer & Kaplan (1971). 

3. Brief description of the turbulence model employed 
Guided by the experimental results discussed in $2, Landahl (1975) has out- 

lined a conceptual model of shear-flow turbulence. The essential idea in this model 
is that the large-scale eddies are excited by small-scale ones through the bursting 
mechanism. It is also hypothesized that the large eddies intermittently create 
conditions suitable for the occurrence of new bursts, thereby making the fluctua- 
ting fields self-sustaining. At its present stage of development, the model provides 
no closure scheme for the Reynolds equations, but merely tries to elucidate 
separately the physics of certain parts of the cycle described above. The dynami- 
cal coupling between the different scales of motion can at  present only be treated 
in a qualitative manner. The key assumption in the mathematical formulation is 
that the nonlinear terms in the Navier-Stokes equations are of crucial importance 
only during bursting, i.e. locally during only a small fraction of the total time. 
Also the mean velocity field is regarded as known. The large-scale eddies are then 
computed in the Fourier space corresponding to the streamwise and spanwise 
directions and time. As was pointed out in § 1, proceeding in this manner Landahl 
(1967) computed frequency-filtered correlation lengths and convection velocities 
for surface pressure fluctuations which were in good agreement with experimental 
results by Willmarth & Wooldridge (1962). 

For the small-scale field, assumed t o  be responsible for the main part of the 
turbulent momentum transport and production, the situation is much more 
complicated, because here nonlinearities are certainly of importance. Drawing on 
the similarity of the bursting process t o  the process of breakdown in the final 
stage of transition from laminar to turbulent flow in a boundary layer (see 
Klebanoff, Tidstrom & Sargent 1962), Landahl(l975) proposed that the bursting 
is due to focusing and trapping of small-scale secondary instability waves on the 
large-scale eddies. This would occur whenever the group velocity of the secondary 
waves becomes locally equal to the convection velocity of the flow inhomogeneity 
produced by the large-scale motions. This condition was used successfully by 
Landahl (1 972) to predict the position of first appearance and frequency of the 
small-scale oscillations observed at  the breakdown of the laminar instability wave. 
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If a turbulent boundary layer is regarded as a flow in a state of continuous tran- 
sition one could in principle, according to this model, compute where and when 
bursting motions would occur if the large-scale field were given. However, this 
very complicated calculation has not yet been undertaken and further simplifica- 
tion seems to be necessary on this point. This part of the model dealing with the 
occurrence of bursts is hot explicitly made use of in the present work, but has 
been briefly recapitulated for reference. 

The Landahl (1975) model is related to the models proposed by Sternberg 
(1965) and Schubert & Corcos (1967) in that the fluctuating field is computed 
from an Orr-Sommerfeld equation. In  the latter models the excitation mechanism 
for the velocity fluctuations near the wall is assumed to be provided by the surface 
pressure fluctuations emanating from large eddies further away from the wall. 
However, the recent experimental investigations referred to in the previous 
section, as well as many others, clearly indicate that the turbulent bursts are 
responsible for the main part of the production. Also, the surface pressure 
fluctuations scale on outer variables whereas the velocity fluctuations near the 
wall scale on inner variables, a circumstance which also favours the turbulent 
bursts as the excitation mechanism. 

4. Statement of the problem 
The problem considered is the flow of a viscous constant-density fluid over a 

rigid, impermeable, smooth, flat plate of large dimensions. Far above the plate 
the velocity of the fluid is assumed to be steady, uniform and parallel to the plate, 
i.e. no exterior pressure gradient is applied. The Reynolds number is assumed 
to be sufficiently large for a fully developed (self-similar) turbulent boundary 
layer to persist on the plate ;%way from its edges. The problem to be considered is 
how the boundary-layer flow responds to an excitation caused by bursting mo- 
tions which are compact in space and time and occur in a random manner near 
the plate. The mean velocity field is assumed to be known. Attention is focused on 
length scales which are large compared with the dimensions of the bursting 
regions. Also the time scales considered are larger than those typical of completion 
of the bursting motions. For computational reasons, see below, only the wall- 
layer region, i.e. the viscous sublayer and the buffer layer, is considered. 

A Cartesian co-ordinate system is used The origin is located on the plate and 
the uniform mean velocity far away from the plate is in the x1 direction. The x2 
direction is assumed to be perpendicular to the plate. In  the usuaI way, the 
pressure and velocity fields are split into a mean and a fluctuating part according 
to 

W k ,  t )  = P(%) +P(% t ) ,  (1) 

where P = (n), V,  = (U,) and angular brackets denote ensemble averaging. In  
this work it is assumed that P is zero and that is given by 

V,  =: S,, auT [ 1 - exp ( - u, x,/av)], (3) 
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as proposed by Schubert & Corcos (1967) as an approximate model for the mean 
velocity distribution near the wall in B turbulent boundary layer with zero pres- 
sure gradient. In (3) Y is the kinematic viscosity, a an adjustable constant and 
u, is the shear velocity, defined in the usual manner by u, = (r,/pUz)Q, 
where r, is the viscous shear stress a t  the wall, p the fluid density and U, the 
velocity of the exterior potential flow. It mas shown by Schubert & Corcos 
(1967) that if the value of a. is chosen to be 16 the expression (3) fits well the 
measurements by Coles (1956) of the streamwise mean velocity up to 

u,x2/v 21 50, 

but becomes increasingly worse further away from the wall. As only the wall 
region is to be considered, (3) is used in this work as a rough model. The reason 
for this simplification will be explained below. The length and velocity scales in 
(3) are (zv/u, and au,, respectively, with a2 serving as a Reynolds number, called 
R below, for the flow under consideration. Schubert & Corcos also discussed the 
parallel-flow assumption and showed that this approximation is a very good one. 

With the use of the above length and velocity scales the Navier-Stokes 
equations in non-dimensional form become 

u , , t+usu , , s  = -n,r+R-lu,,ss (4) 
and the continuity equation 

up,r = 0. ( 5 )  
Taking the ensemble average of (4) and subtracting this average from (4), one 
finds after use has been made of ( 5 )  

vr,t + V, vr, 1 + '1, ' 2  K, 2 = - P, r + R-l ur,ss + ((vr us> - vs),s, (6) 

Vr,? = 0. (7) 
For convenience, the following notation is introduced: 

qr = (~vrvs)-vrvs) ,s~ 
x = (z,~,z) ,  v = (u,v,w), D = d/dy.  

The vector q is assumed to be known in this work and is discussed in some detail 
in 95. The system of equations (6) and (7) is to be solved subject to the usual no- 
slip condition and decay as y becomes large, i.e. 

v = 0 for y = 0, 

l i m v = O  as y++co. 

It turns out that further simplifications can be made if one considers the Fourier 
transform of (6) and (7) in the homogeneous directions and time and defines 

+ = (2n)-3 exp [ - i(k. x'- wt)] v d x ' d t ,  s:: 
where x' = (x, z )  and k = (kx, ka). The transforms of p and q are defined ana- 
logously. Insertion of the transformed variables into (6) and (7)  gives directly 

ikx( U -  C )  t2 + ( D U )  8 = - ikx@ + R-l (D2- k 2 ) &  +$%, 

ikz( U -  C) 0 = - D@+ R-l (D2- k2) 0 +By, 
ikz( U - C) 8 = - ik$@ + R-l(D2- k2)  8 + gZ, 

ikxQ+DO+iks@ = 0, 
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where c = w/kz is the 'phase ;speed' in the streamwise direction of each Fourier 
component. It is convenient to  introduce velocity components parallel and per- 
pendicular to the vector k in the following manner (cf. Squire 1933): 

k,ii = kzf2 + kzi3, k,E = kzQ - kx$. (8), (9) 

After some manipulations, one finds the following equations for 6 and i i j :  

As Q is assumed to be known (10) is an inhomogeneous Orr-Sommerfeld equation 
for 6. When 8 has been found (1 1) can be integrated directly to find G. Equation 
(10) can be solved in terms of t'he normal modes of the homogeneous Orr-Sommer- 
feld equation; see, for example, Eckhaus (1965, p. 107). If one defines a quantity 
6 as 

the solution of (10) can be written as 

where I, is given by 

In = 1 (D2 - k2)  6 ( n ) d ~ / .  
0 

In  (12), dn) and tYn) are the nth eigenvalue and eigenfunction respectively of the 
homogeneous Orr-Sommerfeld problem for a given k (in this case real). iP) is 
the corresponding adjoint ei5enfunction. Once 6 and 63 are known, 42 and U; may 
easily be obtained from the inversion of (8) and (9).  

The appearance of the On-Sommerfeld operator in (10) is the reason for the 
choice of the expression (3) for the mean velocity profile because, as was shown by 
Schubert & Corcos ( 1967), {,he solution of the homogeneous Orr-Sommerfeld 
problem can then be very easily obtained in terms of an algebraically very simple 
Frobenius series in e-Y. Schubert & Corcos (1967) used a boundary-layer version 
of the Orr-Sommerfeld equation. I n  the present work the full equation was 
solved; for details the reader is referred to Bark (1974). 

Equation (1 2) shows that the only singularities of 8 in the complex frequency 
plane are located a t  the eigenvalues of the Orr-Sommerfeld equation. This means 
that w has a wave structure However, from (11)  it can be seen that 63 has, in 
addition to  these poles in the frequency plane, singularities emanating from the 
inversion of the operator on the left-hand side of (11). These singularities corre- 
spond essentially to viscous decay of fluid motions parallel to the wall. A peculiar 
feature of these motions is their lack of pressure fluctuations; see Landahl(1975). 
Their presence 4 1  make the 1c spectra have a composite structure, i.e. both wave- 
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FIGURE 1. The uw component of the Reynolds-stress tensor as function of time a t  
y+ = 30. From Willmarth & Lu (1972). 

like and convected eddy-like motions will be present. However, the experiments 
by Morrison et a2. (1971) indicate that the wavy motions dominate and conse- 
quently the terms within the last parentheses in (1 1)  are neglected in this heuristic 
analysis. 

5. Discussion of the nonlinear terms 
The forcing term on the right-hand side of (lo), which describes the spatial 

variation of the difference between the averaged Reynolds stress and its instan- 
t,aneous value, can be expected to be locally very large during bursting periods. 
The experiments by Kline et al. (1967), Corino & Brodkey (1969) and Willmarth 
& Lu (1972) suggest that the averaged terms in q can be neglected. In  the theory 
of aerodynamic noise (Lighthill 1952), which has some similarities with the pre- 
sent one, a tractable mathematical problem can be formulated because the weak 
linear flow (sound waves) and the strongly nonlinear flow (turbulence) have a 
weak mutual interaction, the former motion being thought of as driven by the 
latter. The present problem is conceptually more complicated, but it is assumed 
that the intermittent spatial and temporal structure of the bursting motions is 
sufficiently distinct to allow the use of a simplified mathematical model for the 
forcing mechanism, which is assumed to excite the large-scale fluctuations in a 
‘sprinkling’ manner, cf. Kovasznay (1973). However, it  should be kept in mind 
that the mean time between bursts, scaled on wall variables, is an increasing 
function of the outer Reynolds number according to Rao, Narasimha & Badri 
Narayanan (1971) and Laufer & Badri Narayanan (1971). This implies that the 
proposed model is likely to work only at  high Reynolds numbers based on outer 
variables. Such a case is shown in figure 1, from Willmarth & Lu (1972), which 
shows that the temporal behaviour at a fixed point in space of the fluctuating 
transport of streamwise momentum perpendicular to the wall resembles a se- 
quence of Dirac delta functions. 
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There is, as yet, no conclusive information available regarding the size of the 
bursting regions. The intermittent momentum transport appears to take place 
over bounded continuous ranges of scales and strengths. However, Corino & 
Brodkey (1969) estimated the dimensions of the region of small-scale motion 
during the ejection phase as Ax+ 21 20-40, Ayf E 15-20 and Azf N 5-50. Kim 
et al. (1971) reported Az+ N 3 0-30 as typical for the spanwise width of a burst. 
Morrison et al. (1971) found A,+ N 630 and h,f 2: 135 as the characteristic wave- 
lengths of the long-time averaged energy spectra near the wall. Consequently, 
there is a separation of length scales, which can be expected to increase with the 
Reynolds number. The same can be expected to hold for the corresponding time 
scales. Thus, it seems reasonable, as a rough model, to equate the dependence of 
the forcing term Q on the homogeneous space co-ordinates and time to a sequence 
of randomly distributed Dira,c delta functions. 

The dependence of Q̂  on the co-ordinate perpendicular to the wall is more 
delicate. Numerical experiments show that a Dirac delta function is unsuitable 
here owing to the oscillatory behaviour of the adjoint eigenfunction of the Orr- 
Sommerfeld equation. This behaviour will make the results strongly dependent 
on the distance from the source to the wall; see (12). Therefore a smooth distribu- 
tion must be employed. Unfortunately, to date, experimental results are only 
available for the component of the Reynolds-stress tensor corresponding to the 
fluctuating transport of streamwise momentum in the direction perpendicular to 
the wall (Kim et al. 1971; Brodkey et ak. 1974). Although this is the only com- 
ponent affecting the momentum balance for the meanvelocity field, the remaining 
five components may very well have a strong influence on the fluctuating field. 
This influence will not average out in quadratic quantities such as energy spectra. 
Be that as it may, in order to be able to proceed, one must a t  present assume 
that the uv component provides the most efficient excitation of the fluctuations. 
The remaining components are accordingly set equal to zero. It is hoped that this 
highly simplified model will contain some of the essential physics of the problem 
posed. 

The formerly mentioned measurements of uv during bursting show that this 
quantity is a weakly, but still noticeably, varying function of the outer Reynolds 
number. The measurements by Brodkey et al. (1974) were performed by using 
hot-wire anemometry and conditional sampling techniques. The raw data were 
processed on a, computer. These results can be expected to be somewhat more 
accurate than those of Kim et al. (1971), who used visual techniques. However, 
the latter experiments were performed at a higher outer Reynolds number, and 
mere thus considered to be more suitable for the present purpose. 

h 

The dependence of uv on y is here assumed to  be the form 

uv N cly3exp ( -cZy2), (14) 

where the adjustable constants c1 and c2 are computed from a least-squares fit 
to measured data.? The function uv with c1 = 1-87 x and c2 = 4.42 x 10-3 
is shown in figure 2, where the data from Kim et al. (1971) are also displayed. The 
third power of the distance from the wall appearing in (14) is a consequence of 

As the results to be presented in 0 6 are normalized spectra, the value of el is immaterial. 
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FIGURE 2. The u v  component of the Reynolds-stress tensor as function of y+ during burst- 
ing. 0 ,  measuredpointsfrom Kim eta.!. (1971); ---,fittedcurveaccordingtoformula(14). 

continuity and the fact that u varies linearly with y near the wall (Hinze 1957, 
p. 472). The second power of y in the exponent in (14) was chosen because it gave 
a somewhat better fit to the data than did an expression containing the first power. 
If the motions producing Reynolds stress were weak, the behaviour of u v  a t  large 
distances from the wall would be a very nearly exponential decay. However, the 
detailed dependence on y in this region should not matter very much because 
the adjoint eigenfunction in the integrand in (12) is here very small. The model 
for the behaviour in space-time of the instantaneous Reynolds stress is thus 
assumed t o  be of the form 

uz, = S(t )  S(x) S(z)  c,y3 exp ( - c2 y 2 )  (15) 

for each individual burst. The remaining components are assumed to have 
negligible influence. 

I n  order to complete the modelling of the forcing term Q̂  in (12) for the purpose 
of computing spectra, its statistics have to be considered. It is assumed here that 
the statistical properties of the turbulent flow field may be modelled analogously 
to the ‘shot noise’ current flowing in a resistor connected to a vacuum diode owing 
to  the randomly occurring electron emission from the heated cathode. It is also 
assumed that the bursts occur independently in time and the homogeneous space 
co-ordinates. This approach has been used by, among others, Lumley (1965), 
Lahey & Kline (1971) and Kovasznay (1973). Such a stochastic process can in the 
one-dimensional case be written as 

i ( t )  = Xj,H(t-  t,) = X Fm(t - t,), 
rn m 

where H is the Heaviside unit step function. j ,  and t ,  are random va.riables whose 
probability distributions are assumed to be known. For the shot-noise problem 
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the coeEcientsj,, are equated to unity and it can be shown that t, is given by a 
Poisson distribution. More general processes can be modelled by multiplying 
each term in the series (16) by some function oft - t,,. If a Poisson distribution is 
assumed also for j, and (i) is assumed to be zero, the following relation can be 
shown to hold (Rice 1944): 

( i ( t )  i( t  4- T))/(i2) = (W) P(t + T))/(P2), (17) 

where the brackets stand for time averaging. This means that the statistics for 
the response function i(t) are given by the response F(t) of an individual event. 
For the present turbulence model thisimplies that thenormalizedenergy spectrum 
of the fluctuating streamwise velocity component is given by the normalized 
spectrum of the response to an individual burst. It is implicitly assumed here 
that the temporal and spatial structure is the same for all bursts, whose strengths 
are assumed to be Poisson distributed. However, the visual observations of burst- 
ing motions by Kline et ab. (1967) and Corino & Brodkey (1969) showed that this 
is certainly not true. These experiments clearly showed that there is a consider- 
able variation in both the kinematics and strength of the motions which make the 
largest contribution to the Reynolds stress. Thus the results obtained must be 
interpreted with extreme care when this model for the fluctuating small-scale 
field is used. Only overall properties of the computed spectra can be expected to 
be reasonably well modelled. One consequence of the simplifying assumptions 
made is that, as will be seen below, the peaks in the computed spectra will be 
sharper than the measured ones. This is because the computed peaks are associ- 
ated with the vertical scale of the particular model burst chosen. Improved 
results would most likely be obtained if the constants c1 and c2 in (14) were taken 
as random variables, but this would considerably complicate the numerical 
computations. 

Moreover, experiments by Rao et ab. (1971) indicated that the time between 
bursts is distributed according to a lognormal law. The probability density for 
the time between events at  fixed point in space for such a process is given by 

where m is the mean value and a the variance for the logarithm of the random 
variable t. For a Poisson process the probability density reads 

(19) 

where h is the mean value. Comparing (18) and (19) one sees that the most prob- 
able time between bursts for the Poisson-process model is zero whereas for the 
lognormal process this quantity is non-zero. This means that the bursts occurring 
at  a given point fixed in space are not independent of each other (cf. Offen & 
Kline 1974). If a Poisson distribution is used the error is likely to be particularly 
serious for small scales. The behaviour for large values oft of the two probability 
density functions is also different, but this is presumably not so serious as the 
difference for small t. It can thus be expected that anomalous behaviour of the 
computed wavenumber spectra may show up for high frequencies. The reason 

fi(t) = A-l exp ( - t/h), 
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for this is that a Poisson-process model will overestimate the amount of small 
scales present in the field because according to this model bursting would occur 
too often. If the more realistic lognormal model is used, the surplus of small scales 
will have time to decay between bursting events. The assumption that the joint 
space-time statistics are such that the probability distribution can be written 
as a product of three functions each depending on one variable only is also un- 
realistic. The experiment by Kline et al. (1967) indicated very clearly that the 
bursting motions are closely connected with the streamwise streaks, which in 
turn were shown to occur in a rather well-dehed periodic pattern in the spanwise 
direction. However, because of the considerable simplifications to the mathe- 
matics offered by (17) if this assumption is made, as suggested by Kovasznay 
(1973), such a Poisson distribution both in time and the homogeneous co-ordi- 
nates is assumed also in this work to model the statistics of the bursting motions. 

The assumption of a Dirac delta function behaviour in time and the homo- 
geneous co-ordinates for each individual burst will also cause non-physical 
behaviour of the computedspectra a t  large distances from the origin infrequency- 
wavenumber space, i.e. for scales of the order of the burst motion itself. 

6.  Computation of spectra 

for 6 found from (12) one can solve for 
wavenumber spectrum in the standard manner. The result reads 

Combining (8) and (9) with the continuity equation and employing the form 
and then determine the frequency- 

where * denotes the complex conjugate, 

G(n) = L-1 [ ( * k z / k x )  ( D  u) a(n)] + G H  

L[t?H] = [ ( u - C ) + ( i / k , R ) ( 0 2 - - k 2 ) ] G H  = 0. 

(20b) 

and the operator L and GH are defined by 

(21) 

The homogeneous solution zijH has to be included in order to satisfy the condition 
of zero slip at  the wall. In  deriving (20b),  the last term in (11) was neglected as 
explained in $4, since it does not contribute wavelike terms. The series (20) 
is in this calculation terminated after the first term under the assumption that 
the higher eigenmodes do not contribute significantly to the statistics owing to 
their high decay rates (cf. Landahl 1967). According to 95 the formula (20) also 
gives the spectrum for the disturbance field as a whole for the statistical model 
chosen. Although the spectrum for the normal fluctuating velocity would be 
considerably easier to compute, the u spectrum was chosen for several reasons. 
The u component plays, according to the present turbulence model, a key role in 
the maintenance of the turbulent flow field because it intermittently creates 
conditions for the occurrence of momentum-transporting bursting motions. 
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Knowledge of the length and time scales of this component should thus provide 
some information on the average intervals in time and space between bursts. 
Furthermore, the normal component is difficult to measure very near a solid 
surface and there seem to be no frequency-wavenumber spectra of this com- 
ponent measured in the wall region available in the literature, whereas a sub- 
stantial amount of such data has been presented for the u component (Morrison 
& Kronauer 1969; Morrison et al. 1971). For these reasons, only spectra of the 
fluctuating streamwise velocity component are considered in the following. The 
two- and one-dimensional normalized spectra are defined as 

S=uU(W, kJ = V-lS S U U ( W ,  k,, kz) 

%&4 k,:) = V-lS 4 J W 7  Ic,, kz)  dkx, 

( 2 2 a )  

( 2 2 b )  

( 2 2 c )  

( 2 2 4  

( 2 2 e )  

(22f 1 

%?k4 = V-lSS S U U ( W ,  k,, kz) dk, d k ,  

&JcdJ = V-ISS S U U ( W ,  k,, k,) dw dkz, 

= V-lSS S U U ( W ,  k,, kz)  df3 dlc,, 

V = SSf S U U ( ~ ,  k,, kz)  d W  dk,d&, 

where the dependence on y js dropped for brevity. I n  the following the overbars 
in the definitions of the two- and one-dimensional spectra are dropped since no 
confusion can arise thereby. The numerical results are presented in the usual wall 
units . 

The spectra defined by (22a-f)  have been computed a t  a height of 15 wall 
length units above the plat8e on the following mesh in frequency-wavenuniber 
space : 

0.01 6 W +  < 0.61, 

0.005 6 Jc$ < 0.03, 

0.005 < k$ 6 0.105, 

Aw+ = 0.03, 

Ak; = 0.005, 

Ak; = 0.005. 

Upstream ‘propagation’ of Fourier components, signified by the frequency and 
wavenumber having opposite signs, is thus not considered. The two- and one- 
dimensional spectra were computed from the three-dimensional spectrum by 
a multi-dimensional Simpson formula. The reason for the particular choice of 
the height above the wall (,y+ = 15) made is that experiments have shown that 
this is near the region where the turbulent production and the root mean square 
of the streamwise velocity fluctuation attain their maximum values (Kline et al. 
1967). Furthermore, the convection velocity of the streamwise velocity fluctua- 
tions matches the mean velocity in the neighbourhood of this point (Morrison 
et al. 1971). 

The computations were in fact carried out to higher streamwise wavenumbers 
than those given above. However, it was found that for larger values of k$ the 
spectrum started to grow with increasing k$ and to oscillate with k,f for wave- 
numbers corresponding to  a typical burst size. These results were judged to be 
physically insignificant and were therefore discarded. There are several reasons 
for such anomalous behaviour of the computed spectra. 
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(i) As was pointed out in the foregoing section, the model (15) used for the 
Reynolds stress during a burst is strongly oversimplified in its dependence on the 
homogeneous co-ordinates and time. If the forcing term had been more realistic- 
ally described, say by a product of Gaussian bell-shaped functions in these co- 
ordinates having small but finite widths, the influence of high frequencies and 
wavenumbers would have been reduced. This would have required additional 
parameters in the model and was therefore discarded in favour of delta functions. 

(ii) From the expression for Q̂  one sees that the second derivative with respect 
to y+ of the difference between the instantaneous Reynolds stress and its mean 
value is required to compute the response according to (12). After integration by 
parts one then finds that the fit to the measured dependence of 0 on y+ will be 
multiplied by the second derivative of the adjoint eigenfunction. Because of the 
oscillatory behaviour of this function for high wavenumbers, large errors are 
likely to occur in this region. 

(iii) The Statistical model will overemphasize the influence of small scales. 
This is probably the most serious limitation of the model and was discussed in 3 5. 

From the above remarks i t  is obvious that the computed results in the high 
wavenumber regime are very sensitive to errors in the fine-structure of the burst 
model. Further improvements are sorely needed on this point. In  order to in- 
vestigate this matter, some numerical experiments were carried out where the 
response to some other types of momentum sources were computed. It was found 
that common to all the results from these numerical experiments was the occur- 
rence of a sharp peak in the low wavenumber region. The wavenumbers for this 
maximum were found to differ only by amounts of order unity for different source 
functions. The behaviour of the computed spectra for large streamwise wave- 
numbers, did, however, differ considerably. 

7. Properties of the computed spectra 
The computed one- and two-dimensional spectra are shown in figures 3 and 4. 

In general, great caution should be exercised when trying to interpret long-time 
averaged energy spectra of a random field. Such spectra contain nothing more 
than information on the average distribution of scales. An illuminating analysis 
of the loss of information due to long-time averaging has been given by Lahey & 
Kline (1971). 

The 7c: spectrum shown in figure 3 (a )  indicates that the large-scale response 
to the particular burst model chosen can be interpreted as a rather well defined 
wave packet. The peak of the computed spectrum is reasonably close to the one 
measured by Morrison et aE. (1971). This is also true for the k$ spectrum shown in 
figure 3 (b) .  A n  interesting result which can be inferred from this graph is that by 
far the greatest part of the energy of the excited field is projected on highly swept 
waves. This is also in agreement with the experimental results of Morrison et al. 
(1971), who showed that the observed streaky structure near the wall could be 
explained by the presence of a system of waves steeply inclined to the mean flow. 
Also the computed frequency spectrum shown in figure 3 (c) displays approxi- 
mately the correct time scale for the large eddies in the wall layer. 

16 F L h I  70 
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FIGURE 3. (a)  S,,(k,C), (b )  X,,(kf) and (c) X,,(w+) computed at yf = 15. Locationof the  
measured peak from Morrison et al. (1971).  
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FIGURE 4. Xuu(w+, kc,*) computed at y+ = 15. The values on two 
consecutive level curves differ by a factor of 2. 

The three-dimensional u spectrum has a pole at  the complex frequency given 
by the eigenvalues for each given pair of spanwise and streamwise wavenumbers. 
Additional singularities emanate from the operator Lll  in (20). Whether the 
latter are important or not may be investigated by separating out the influence 
of the pole at W+ = do)+ by setting 

SUU(W+, k$, k$) = Z(w+, iq, Ic$)/lw+- d o ) +  I 2, 

.@ = J I w+ - d o ) +  I SZU(W+, k&, k$ ) dk$ dk$ , 

(23) 

where 2 .will contain the influence of the other singularities. 
sional frequency spectrum we accordingly define a quantity Z by 

the one-dimen- 

(24) 

the variation of which with W+ will indicate the importance of the remaining 
singularities. In  figure 5 &(w+) and XUU(w+) are plotted; .@ is normalized t o  the 
same value as Se,(o+) at the left end-point of the interval. From this graph it 
can be seen that .@ is a slowly varying function of w+, showing that the importance 
of the remaining singularities is small in the interval considered. As the variation 
of do)+ with k$ near the peak in 8Uu(k$) is also small, see figures 3 ( 6 )  and 7 ,  an 
approximate formula for Suu(w+, k,f ) would be 

Xuu(Wf ,  @) N Z(k$)/Iw+- d o ) +  I 2, ( 2 5 )  
where 

z = J B d q .  (26) 
According to (25) the energy distribution in the k;, w+ plane should be located 

in a band around the curve defining the phase velocity. The width of this band will 
essentially be determined by the diffusive properties of the waves, i.e. the imagi- 
nary part of the eigenfrequency. The computed k,f,  w+ spectrum is shown in 
figure 4 and the same spectrum measured by Morrison et al. (1971) is shown 
in figure 6. In  figure 4 the line corresponding to the experimentally found con- 
vection velocity is also shown. From these graphs it can be seen that the charac- 
ters of the computed and measured spectra are rather similar. The main differ- 
ence is in the energy distribution as function of @, which has a much sharper 

16-2 
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FIGURE 5 .  S,,(w+) (upper curve) and Z ( w + )  (lower curve), defined by (24). 

peak in the computed spectra than in the measured one. As was discussed in $3,  
this is very likely a consequence of the assumption that all bursts have the same 
vertical structure. 

The computed real and imaginary parts of the streamwise phase speed as 
functions of the streamwise wavenumber for different spanwise wavenumbers 
are shown in figure 7. This diagram indicates that all waves are damped. Bussman 
& Miinz (1942) have estimated the stability boundary for the model velocity pro- 
file used, given by (3), to be a 2i 2.6 x lo2, which means that all waves are indeed 
highly stable. The imaginary part of the phase speed seems to  be roughly in- 
dependent of the wavenumber, and the result of Landahl(l967) that each eddy 
has a lifetime proportional to its size is thus found to be valid for long waves in 
the mall layer as well. The e-folding time of each wave is approximately one third 
of its period. This means that during decay the peak in the energy spectrum for 
each eddy will successively move towards lower frequencies and wavenumbers. 
Also the real part of the streamwise phase velocity is roughly constant, which 
means that the group velocity is approximately equal to the phase velocity and 
that dispersion is weak for this waveguide. The small dispersivity means that the 
temporalvariation of a wave packet as it travelsdownstream is almost exclusively 
caused by the different e-folding times of each component. The decay mechanism 
is provided by the interaction of each wave with the mean flow and, as k,R is 
here of order one, viscous diffusion. The computed dispersion relation also shows 
that the frequency depends only weakly on the spanwise wavenumber, so that the 
lateral spread of influence is small for the first mode in (20). As suggested by Mor- 
rison et al. (1971), one may interpret spectra of the kind shown in figures 3 and 4 
as emanating from vortices nearly aligned with the mean flow. It should be 
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FIGURE 6. Measured Suu(o+, k:) .  From Morrison et aE. (1971). 
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FIGURE 7. Computed phase velocity as function of k:. (a) k$ = 0.005. 
( b )  k: = 0.025. (c) k: = 0.05. ( d )  k: = 0.1. 
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FIGURE 8. 0, measured values of XUU(o+, k z )  for k: = 0.01 from Morrison et al. 
(1971);  -, three-parameter fit according to  ( 2 5 ) .  

pointed out that this type of flow pattern in turbulent shear flows was first 
suggested by Townsend (1956, p. 208). 

The consistency of the present calculations can be investigated by fitting a 
three-parameter expression (of the form ( 2 5 )  to sections parallel to the frequency 
axis through the kz, w+ spectra measured by Morrison et al. (1971). Such a fit is 
shown in figure 8. From these fits one obtains, assuming the model to be valid, 
experimentally determined values for do)+ = c g +  + ic$'"+ for different A$. These 
values can be compared with the computed wave-propagation constants for the 
spanwise wavenumber which gives the largest contribution to the integral in 
formula (26) for z. Such a comparison is shown in figure 9, from which it can be 
seen that the model indeed seems to be consistent with the experimental data. 
Thus, as in a simple second-order mechnical system, the frequency bandwidth 
may be interpreted as a decay rate. 

The absolute values of the three perturbation velocity components as func- 
tions of yf for the most energetic wavenumber vector and frequency a t  y+ = 15 
are shown in figure 10. This graph may be compared with figure 11, which is a 
re-plot by Schubert & Corcos (1967) of the same quantities from the measure- 
ments by Klebanoff (1954). From these graphs it can be seen that the model gives 
the correct relative magnitudes of the different components in the region where it 
can be expected to hold approximately. The much sharper peak in the computed 
streamwise velocity fluctuation as compared with the measured values can be 
explained in the same way as for the spectra; see above. 

The structure of the fluctuating streamwise velocity field found here is similar 
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FIGURE 9. Real and imaginary parts of the downstream phase velocity. 0, 0, computed 
from (25) and measurements by Morrison et al. (1971); -, computed from the Orr- 
Sommerfeld equation. 
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FIGURE 10. Computed absolute values of the fluctuating velocity components for 
the wavenumber at the peaks of the spectra in figures 3 (a) and ( b ) .  
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FIGURE 11.  Measured r m.s. values of the fluctuating velocity component 
by Iilebanoff (1954). From Schubert & Corcos (1967). 

to that obtained by Bakewell & Lumley (1967). These authors measured two- 
point correlations near the wall in a turbulent pipe flow of glycerine. They de- 
composed their data accordling to the proper orthogonal decomposition theorem 
(Lumley 1965) and computed, after making use of an eddy-viscosity hypothesis, 
a pattern consisting of two counter-rotating vortices as the dominant eddies 
near the wall. This pair of vortices would occur randomly in time and space. 
The spanwise separation between the centres of the computed vortices agreed 
very well with nieasuremenhs by Kline et al. (1967). Bakewell & Lumley were 
not able to  predict from therr work the streamwise scale or characteristic time of 
the eddies. However, their model could in principle be used to find sucli scales if 
the correlations in all three space co-ordinates and time were available. Another 
difference between results of the work by Bakewell & Lumley (1967) and the 
present investigation is tha,t the former authors regarded the vorticity of the 
eddies as being convected by the mean flow whereas according to the present 
model this vorticity propagates. 

8. Conclusions 
By using highly simplified models for the mean velocity distribution and the 

intermittent Reynolds stress in the wall region of a turbulent boundary layer, 
energy spectra of the fluctuating large-scale motions in this region have been 
computed. The computed length and time scales were found to be in good agree- 
ment with experimental data. The agreement is perhaps somewhat fortuitous 
considering the rather crude model used, but one can anyway conclude that the 
physical mechanism suggested for the production of large eddies in the wall 



Wave  structure in a turbulent boundary layer 249 

layer is reasonable. However, the computed wavenumber spectra display nar- 
rower bandwidths than the measured ones. This is a consequence of the crudeness 
of the model for the intermittent Reynolds stress. According to the present model 
calculations the statistically dominant velocity fluctuakions in the wall layer 
consist of wave packets having a significant amount of streamwise vorticity. 
These wave packets are produced randomly in space and time by the intermittent 
Reynolds stress and propagate downstream. The results are qualitatively similar 
to those of Bakewell & Lumley (1967). 

This paper reports a portion of the author’s doctoral thesis (Bark 1974). 
The author is very grateful for many clarifying and inspiring discussions of the 
subject with Professor Marten Landahl. Prof. Louis N. Howard also provided 
many valuable points of view. Prof. Richard Kronauer very kindly made avail- 
able an enlarged copy of figure 7. This work was sponsored by the Swedish Board 
of Technical Development and by Eriksberg’s Shipyard. 
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